Apo-intermediate in the transport cycle of lactose permease (LacY).
نویسندگان
چکیده
The lactose permease (LacY) catalyzes coupled stoichiometric symport of a galactoside and an H(+). Crystal structures reveal 12, mostly irregular, transmembrane α-helices surrounding a cavity with sugar- and H(+)- binding sites at the apex, which is accessible from the cytoplasm and sealed on the periplasmic side (an inward-facing conformer). An outward-facing model has also been proposed based on biochemical and spectroscopic measurements, as well as the X-ray structure of a related symporter. Converging lines of evidence demonstrate that LacY functions by an alternating access mechanism. Here, we generate a model for an apo-intermediate of LacY based on crystallographic coordinates of LacY and the oligopeptide/H(+) symporter. The model exhibits a conformation with an occluded cavity inaccessible from either side of the membrane. Furthermore, kinetic considerations and double electron-electron resonance measurements suggest that another occluded conformer with bound sugar exists during turnover. An energy profile for symport is also presented.
منابع مشابه
Flexible Gates Generate Occluded Intermediates in the Transport Cycle of LacY☆
The major facilitator superfamily (MFS) transporter lactose permease (LacY) alternates between cytoplasmic and periplasmic open conformations to co-transport a sugar molecule together with a proton across the plasma membrane. Indirect experimental evidence suggested the existence of an occluded transition intermediate of LacY, which would prevent leaking of the proton gradient. As no experiment...
متن کاملMutations in the lacY gene of Escherichia coli define functional organization of lactose permease.
Mutations in the lacY gene of Escherichia coli have been used to analyze the functional organization of lactose permease. Deletions suggest that the NH2 terminus of lactose permease is not essential and can be replaced by residues of the cytoplasmic enzyme beta-galactosidase. Negative dominant mutations in the lacY gene can be explained by the assumption that membrane-associated lactose permeas...
متن کاملComputational Studies on Lactose Permease of E. Coli as a Model for Membrane Transport Proteins
Title of Document: COMPUTATIONAL STUDIES ON LACTOSE PERMEASE OF E. COLI AS A MODEL FOR MEMBRANE TRANSPORT PROTEINS Pushkar Yashvant Pendse, Doctor of Philosophy, 2013 Directed By: Jeffery B Klauda, Assistant Professor, Department of Chemical and Biomolecular Engineering Membrane transport proteins actively transport ions, metabolites, drug molecules, and others across the amphiphilic cell membr...
متن کاملProton-coupled dynamics in lactose permease.
Lactose permease of Escherichia coli (LacY) catalyzes symport of a galactopyranoside and an H⁺ via an alternating access mechanism. The transition from an inward- to an outward-facing conformation of LacY involves sugar-release followed by deprotonation. Because the transition depends intimately upon the dynamics of LacY in a bilayer environment, molecular dynamics (MD) simulations may be the o...
متن کاملSugar transport across lactose permease probed by steered molecular dynamics.
Escherichia coli lactose permease (LacY) transports sugar across the inner membrane of the bacterium using the proton motive force to accumulate sugar in the cytosol. We have probed lactose conduction across LacY using steered molecular dynamics, permitting us to follow molecular and energetic details of lactose interaction with the lumen of LacY during its permeation. Lactose induces a widenin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 44 شماره
صفحات -
تاریخ انتشار 2012